Course Hive
Courses
Summaries
Continue with Google
or

Mastering Generative AI: From Basics to Advanced Techniques

Master Generative AI: From Basics to Breakthroughs in AI Models and RAG Systems

4.0 (15)
305 learners

What you'll learn

Understand the evolution of generative AI from classical to modern techniques
Apply RAG and LangChain for building scalable AI applications
Implement end-to-end pipelines using LlamaIndex and LLM fine-tuning methods
Deploy AI models with CI/CD pipelines and container orchestration tools

This course includes

  • 104 hours of video
  • Certificate of completion
  • Access on mobile and TV

Course content

1 modules • 109 lessons • 104 hours of video

Mastering Generative AI: From Basics to Advanced Techniques
109 lessons • 104 hours
  • Generative AI In-Depth Roadmap from Beginner to Expert #generativeai #artificialintelligence31:32
  • Generative AI Complete History Part-1 | Classical AI vs Modern AI | AI vs ML vs DL vs GEN AI01:03:56
  • Generative AI History Part2 | Language Modelling | Seq to Seq model | RNN | LSTM | GRU59:25
  • Generative AI history Final Part (part3) | Transformer | LLM | Chatgpt Training | Diffusion Model54:44
  • @LlamaIndex Introduction | RAG System | LlamaIndex Doc Walkthrough #generativeai #llamaindex #llm29:50
  • @LlamaIndex Project Setup | Simple Q/A System using OpenAI API and LlamaIndex #OpenAI #LlamaIndex31:31
  • Google Gemini Introduction Part 1 | Google Gemini Python API #gemini #generativeai #llm36:00
  • Google gemini API with Python Part 2| text to text generation | image to text generation #gemini #ai31:39
  • Google gemini API with Python Part 3| Embedding | Saftey Setting #gemini01:02:07
  • 🟥 Let’s build QA System with @LlamaIndex and Google Gemini!(LlamaIndex, Gemini Embedding, GeminiPro)02:22:20
  • @OpenAI "SORA" Just SHOCKED EVERYONE | Text-to-Video Generation | AGI | Alternatives of SORA29:36
  • LangChain v/s Llama-Index | Detailed Differences | Which one you should use?38:33
  • End to End RAG Pipeline Part-1 | RAG Architecture | Ingestion | generation | Reterival #rag #llm53:45
  • End to End RAG Pipeline Part-2 | Advance Reterival Process | RAG Architecture In depth37:02
  • RAG Pipeline from Scratch Using OLlama Python & Llama2 | | Llama2 Setup in local PC #llama2 #rag49:03
  • RAG Application using @LangChain @OpenAI and FAISS #llm #rag #python #langchain #vectordata53:16
  • RAG Application using Langchain Mistral AI and Weviate db #llm #rag #langchain #vector #mistral47:30
  • RAG Application Using OpenSource Framework @LlamaIndex and @Mistral-AI #rag #finetuning #llm33:23
  • Haystack by Deepset - Framework to Build LLM Apps | RAG Pipeline Using Haystack and OpenAI46:02
  • Discover The Power Of Multilingual Ai Voice Assistant With Google Gemini-pro And gTTS Technology!45:29
  • End to End RAG Application Using Haystack MistralAI Pinecone & FastAPI #rag #llm #haystack #mistral01:01:40
  • Complete Automated Local Setup for AI (ML,DL,GenAI) Development With Vscode, Git, Anaconda & Docker47:42
  • 25 Best VSCode Extensions for AI (ML,DL,GenAI) Devlopment In 202422:47
  • Multimodal RAG Systems: Comprehensive Introduction to Next-Gen AI Technology #multimodal #rag #ai24:36
  • MultiModal RAG Application Using LanceDB and LlamaIndex for Video Processing46:35
  • Realtime Multimodal RAG Usecase Part 1 | Extract Image,Table,Text from Documents #rag #multimodal41:27
  • Realtime Multimodal RAG Usecase Part 2 | MultiModal Summrizer | RAG Application #rag #multimodal #ai29:42
  • Realtime Multimodal RAG Usecase Part 3 | MultiVectorRetriever with Langchain | RAG Application #rag21:44
  • Realtime Multimodal RAG Usecase with Google Gemini-Pro-Vision and Langchain | RAG Application #rag40:30
  • End to End RAG App with Hugging face Google Gemma &  MongoDB Vector Search #rag #ai #llm #genai53:23
  • Building Real-Time RAG Pipeline With Mongodb and Pinecone Part-1 #rag #llm #mongodb #pinecone44:38
  • Building Real-Time RAG Pipeline With Mongodb and Pinecone Part-2 #rag #llm #mongodb #pinecone24:45
  • Chat With Multiple Documents(pdfs, docs, txt, pptx etc.) using AstraDB and Langchain #rag #ai31:43
  • Built Powerful Multimodal RAG using Vertex AI(GCP), AstraDb and Langchain #rag #ai37:45
  • End to end E-Commerce Chatbot With AWS Deployment using Astra dB(Cassandra), Langchain & Open AI #ai01:08:18
  • Realtime Powerful RAG Pipeline using Neo4j(Knowledge Graph Db) and Langchain #rag53:17
  • Advance RAG 01 - Powerful RAG Using Hybrid Search(Keyword+vVector search) | Ensemble Retrieval01:01:10
  • Advacne RAG 02 - Hybrid Search (Keyword + Vector ) & Reranking With Cohere API | Ensemble Retrieval48:16
  • End-to-End Weather Chatbot with Google DialogFlow and AWS CI/CD Deployment02:35:30
  • Advanced RAG 03 - Reranking with Sentence Transformers and BM25 API28:42
  • Advanced RAG 04 - Reranking with Cross Encoders, and Cohere API19:21
  • Advance RAG 05 - Merger Retriever and LongContextReorder | Lost in Middle Phenomenon40:11
  • Advance RAG 06- RAG Fusion (Get More Relevant Results for Your RAG) | Reranking With RRF48:59
  • Advance RAG 07 - Flash Reranker for Superfast Reranking29:47
  • Advance RAG 08- Powerful RAG with Langchain Contextual Compression Retriever #ai #llm #openai57:20
  • Advance RAG 09- Powerful RAG with Self Querying Retriever #ai #llm #openai45:10
  • Advance RAG 10- Powerful RAG with Parent Document Retriever #ai #llm #openai #gemini51:04
  • End-to-End RAG With Llama 3.1, Langchain, FAISS and OLlama #ai #llm #llama #huggingface38:04
  • Advance RAG 11- Powerful RAG with Sentence Window Retriever using @LlamaIndex and @qdrant #ai #llm39:47
  • Advance RAG 12- Powerful RAG with Merger Retriever and Hypothetical Document Embeddings(HyDE) #ai31:52
  • Complete @LangChain Essential in 1 shot | LangChain Core | LangServe | LangGraph | LangSmith | Agent01:55:49
  • Chatbot Using @LangChain With Memory(Chat History) | LangChain Core | LangSmith01:07:50
  • RAG Based Chatbot With Memory(Chat History) | Creating History Aware Retriever | Langchain #ai #rag37:27
  • Langchain Conversation Buffer Memory vs Conversation Buffer Window Memory | Chat History#ai #llm #yt40:44
  • Langchain Conversation Entity Memory | Langchain Memory Class | Chat History#ai #llm #yt #chatbot33:00
  • Langchain Conversation Summary Memory vs Conversation Summary Buffer Memory | Chatbot #ai #llm #rag44:11
  • LangChain Expression language(LCEL) for Chaining the Components | All Runnables | Async & Streaming52:49
  • LangGraph 01: Syllabus Introduction of End to End LangGraph Course | LangChain #ai #genai #llm10:34
  • LangGraph:02 LangGraph Course Pre-requist | AI Assistant | RAG I LCEL | Tool & Agent #ai #genai #llm42:41
  • LangGraph:03 LangChain AI Agents | Tools | Tool Calling Agent | ReAct Agents #genai #llm #aiagent39:15
  • LangGraph:04 LangChain ReAct Agent with Custom Tool and Self-Ask Agent with Search | AI Agents #llm52:15
  • LangGraph:05 Building AI Agent from Scratch Using Python with Custom Tool #llm #genai #ai #aiagents45:31
  • LangGraph:06 Detailed Introduction of LangGraph #llm #genai #ai #aiagents19:49
  • LangGraph:07 Code LangGraph From Scratch | LangGraph Deep Dive #llm #genai #ai #aiagents #langchain27:10
  • LangGraph:08 Adding RAG to LangGraph Workflow | LangGraph Deep Dive #llm #genai #aiagents #langchain37:49
  • LangGraph:09 End to End Chatbot using LangGraph With Memory #llm #genai #aiagents #langchain #ai46:03
  • LangGraph:10 Structured Output with LangGraph Agents #llm #genai #aiagents #langchain #ai26:18
  • LangGraph:11 Building Finance Bot with LangGraph's ReAct Agent #llm #genai #aiagents #langchain #ai30:54
  • LangGraph:12 LangGraph Agent with Human-In-The-Loop, Checkpoints & Breakpoints #llm #genai #aiagents44:22
  • LangGraph:13 Corrective RAG for Real Time AI Application #llm #genai #aiagents #ai #langchain #genai42:35
  • LangGraph:14 Agentic RAG for Real Time Agentic AI Application #llm #genai #aiagents #ai #genai01:06:10
  • LangGraph:15 Self-RAG for Real Time Agentic AI Application #llm #genai #aiagents #ai #genai59:34
  • Roadmap of Agentic AI & Generative AI with 150 + Interview Questions and Answers #ai #genai #llm17:36
  • LangGraph:16 Advance SQL Database Agent Powered by LangGraph #llm #genai #aiagents #ai #genai37:07
  • 🟥 Autogen Research Agent: End-to-End Project for Paper Analysis & Summarization01:35:30
  • LangGraph:17 Introduction to Multi-Agent System #llm #genai #aiagents #ai #genai #agent01:07:10
  • LangGraph:18 Network or Collaborative Multi-Agent System Implementation #aiagents #ai #genai #agent52:37
  • LangGraph:19 Research and Analysis with Collaborative Multi-Agent System #aiagents #ai #genai #agent36:43
  • LangGraph:20 Supervisor Multi-Agentic System | Agentic AI #aiagents #ai #genai #agent #generativeai45:54
  • LangGraph:21 End-to-End Supervisor Multi-Agentic AI Project for Booking Doctors Appointment #aiagent01:09:20
  • LLM Fine-Tuning: 01 LLM Fine-Tuning From Scratch—Full Playlist Coming Your Way #aiagents #finetuning20:01
  • LLM Fine-Tuning: 02 Understanding Model Pretraining and Training in AI #aiagents #finetuning #ai01:04:40
  • 🟥 Live Q&A on Generative & Agentic AI—Ask Me Anything!37:45
  • LLM Fine-Tuning 03: Transfer Learning and Model Fine-Tuning #aiagents #finetuning #ai01:11:34
  • LLM Fine-Tuning 04: Top 10 LLM Fine-Tuning Frameworks for 2025 | Best Tools for Finetuning AI Agents47:57
  • LLM Fine-Tuning 05: Fine-Tuning vs. RAG vs. AI Agents — Which Approach Fits Your Use Case?27:46
  • LLM Fine-Tuning 06: Why Finetuning Was Difficult in RNN or LSTM – How Transformers Changed the Game50:34
  • Advance RAG Course: Master All RAG Retrieval & Reranking Techniques in One Video💡!08:05:38
  • LLM Fine-Tuning 07: LSTM vs Transformer | Why Transformers Replaced LSTM in NLP48:36
  • LLM Fine-Tuning 08: Master Hugging Face in 3 Hours | Full Crash Course 2025 #ai #huggingface #llm03:10:34
  • LLM Fine-Tuning 09: Fine-Tuning BERT for NLP (NER, Sentiment, QA) | Hugging Face #huggingface #llm58:20
  • LLM Fine-Tuning 10: LLM Knowledge Distillation | How to Distill LLMs (DistilBERT & Beyond) Part 101:03:40
  • LLM Fine-Tuning 11: LLM Knowledge Distillation | How to Distill LLMs (LLAMA, Phi & Beyond) Part 201:12:41
  • LLM Fine-Tuning 12: LLM Quantization Explained( PART 1) | PTQ, QAT, GPTQ, AWQ, GGUF, GGML, llama.cpp02:12:20
  • LLM Fine-Tuning 13: LLM Quantization Explained (PART 2) | PTQ, QAT, GPTQ, AWQ, GGUF, GGML, llama.cpp03:21:12
  • LLMOPS 01: End-to-End Advanced RAG Project with LLMOPS | Complete Setup & Use Cases Discussion23:59
  • LLMOPS 02: Build Multi-Doc Chat with Advanced RAG Part-1| RAG in a Modular Manner (Logger, Config)01:22:08
  • LLMOPS 02: RAG Analysis & Evaluation Strategy Part-2 | Advanced RAG Pipeline in LLMOPS53:55
  • LLMOPS 03: Building API with FastAPI & Swagger Testing | API Development in LLMOPS Project43:47
  • LLMOPS 04: Building UI & Testing the Full App | Frontend Integration in LLMOPS Project14:04
  • LLMOPS 05: Unit & Integration Testing with Pytest | Hands-on Testing in LLMOPS Project32:44
  • LLMOPS 06: CI/CD Deployment with AWS ECS & Fargate | End-to-End GenAI Project Deployment01:15:47
  • Guardrails for LLM Applications | Complete Tutorial for AI Developers WIth Guardrails AI01:26:11
  • LLMOPS 07: Jenkins with Docker | Full CI/CD Pipeline Setup | End-to-End GenAI Project Deployment35:09
  • LLM Fine-Tuning 14: Train LLMs on Your PDF/Text Data | Domain-Specific Fine-Tuning with Hugging Face01:44:41
  • LLM Fine-Tuning 15: Instruction Fine-Tuning Explained | Domain-Specific FineTuning with Hugging Face55:52
  • LLMOPS 09: CI/CD Deployment for LLMOps using GitHub Action on AWS EKS | Deploy LLMOPS Project57:40
  • LLM Fine-Tuning 16: Preference Alignment & Preference Training in LLMs with RLHF, RLAIF, DPO, LoRA59:38
  • LLM Fine-Tuning Crash Course: Finetune model on PDFs, Instruction FT, Preference Training (DPO/RLHF)03:36:13

You may also be interested in

FAQs

Suggest a Youtube Course

Our catalog is built based on the recommendations and interests of students like you.

Course Hive
Download now and unlock unlimited audiobooks — 100% free
Explore Now